Scientia, Fortitudo et Virtus (Bilgi, Cesaret ve Fazilet)
kanser etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
kanser etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

1 Şubat 2017

Bilimin henüz cevaplayamadığı soru: Mühürlü (imprinted) genler!

dna-epiSorular daima gerçek, cevaplar çoğu zaman yanlıştır
Bu yazım oldukça ilginç,sıcak ve gündemdeki bir konu ile ilgili. Dolayısı ile hakkında çok az şey biliyoruz. Esasen bilimde her şey hakkında çok az şey biliyoruz!  (Not: Konu içinde kaybolan okuyucular, metin içinde verilmiş olan linkleri takip ederek, bu karmaşıklıktan biraz kurtulabilirler).
Neyse geçelim...
Memelilerin (ve bazı bitkilerin!) genomları boyunca bazı genler, anne veya babadan gelip gelmediklerini gösteren işaretler taşırlar. Hepimiz her otozomal (allozom denilen X ve Y kromozomlardaki genlerin dışındaki genler) genin iki kopyasını taşırız. Bir kopyasını annemizden, diğerini ise babamızdan miras alırız. Dolayısı ile, bu genlerin her iki kopyası (alel de deniyor) da işlevseldir.  Yani, anneden veya babadan kalıtılan normal homolog genler arasında bir fark olmadığı kabul edilmektedir. Bu, gerçekten de birçok gen için doğru kabul edilebilir (Kromozom ve genlerle ilgili bir yazımı burada okuyabilirsiniz).
Ancak son yıllarda biliyoruz ki,  bazı az sayıda genin durumu buna uymaz. Yani bu çeşit bir katlımda, iki alelin eşit olarak ifade edildiği fikri geçerli değildir. Bu genler anne veya babadan gelmesine dayalı bir işlev farkı gösterirler.  Her ikisi birden kendini ifade etmez. Dolayısı ile bu genler üzerindeki işaretler bir ebeveyn alelinin seçici şekilde ifade edilmesi ya da suskun kalmasını sağlarlar.  
Bu genlere İngilizce “Imprinted” genler deniyor. Dilimize bunu “mühürlü, damgalı, kapatılmış ya da baskılanmış” genler olarak çevirebiliriz (ben mühürlenmiş terimini tercih edeceğim!). Yani bir ebeveynden gelen kopya mühürlenmiş ve ifade edilmezken, diğer ebeveynden gelen kopyasında bu mühürlenme olmayıp, gen kendini ifade eder (yani bir RNA türü veya protein kodlar).
Damgalama işlemi, gamet dediğimiz yumurta ve spermde embriyoda inaktif olması hedeflenen gen kopyasının "işaretlenmesi" başlar. İşaret, genellikle genin promotorunu yapan DNA dizisindeki metilasyondur. Epigenetik bir işaret olan metil grupları DNA'daki sitozinlere eklenir (DNA’nın C ile gösterilen nükleotidi, yani harfi). Bu çeşit işaretleme özellikle gunain (G) ve sitozinlerin yan yana oldukları bölgelerde daha yaygın olur. Sitozinlere eklenen bu metil işarteleri, promotora ifade (transkripsiyon) faktörlerinin bağlanmasına engel olur ve promotorun önündeki gen ifade edilmez yani suskun kalır. Bu olay aynı zamanda birçok kanserde tümörleri baskılayan genlerin promotorlarında da olduğundan, kanserleşme görülmesine neden olur (Epigenetik ile ilgili yazılarımı buradaburada burada ve burada okuyabilirsiniz).
Omik çağında olduğumuzdan, bu tür genlerin tanımlanması ve işlevlerinin anlaşılması için “Imprintome” terimi de kullanılmakta. Bu konudaki çalışmalar, yavrularında susturulan anne ve babalık genlerinin tanımlanmasını hedef almaktadır.
Mühürlenmiş genlerin insandaki sayısı yaklaşık 100 kadar. En iyi çalışılmış üçünü örnek verirsek;
mouseigf2IGF2 geni insülin benzeri bir büyüme faktörünü kodlar. Bizler dahil diğer memelilerde bu genin babaden gelen kopyası (alel) ifade edilirken, anneden geleni suskundur. Eğer anneden gelen de ifade olsaydı kanser dahil bir ton hastalığa düçar olacaktık. Diğer bir gen ise IGF2 proteinini bağlayan ve adı IGF2r olan bir reseptörü (hücre yüzeyinde gömülü bir almaç) ifade eden reseptör geni. Bu genin ise anneden gelen kopyası ifade edilirken, babadan gelen kopyası ifade olunmaz.
Bir diğeri ise, XIST genidir. Bu gen bir RNA kodlar ve bu RNA dişilerin (ve kadınların) her hücresinde bulunan iki X kromozomundan birini inaktive eder (bu inaktif X kromozomına Barr cisimciği de denir). Bu inaktifleştirme tamamen şansa bağlı olduğundan (yani dişinin bazı hücrlerinde annesinden gelen X inaktive edilrken, bazı hücrelerinde babasından gelen X inaktive edilir), tipik bir mühürlenme olayı değildir. Ancak, dişinin embriyonik olmayan dokularında (örn., amniyon, plasenta ve göbek kordonu) sadece babadan gelen X kromozomu mühürlüdür (ayni inaktiftir).
Dolayısı ile, mühürlenmiş genler 20 bin küsur genden sadece 100 kadar olmalarına rağmen, bireyin hayat-memat meselesinde büyük rol oynarlar. Bu mekanizma çalışmasa idi canlı doğmamız bile muhtemelen zor olacaktı. Kopya hayvanlarda canlı döl elde edilme olasılığının% 1’lerde seyretmesi ve canlı doğsa bile yaşam süresinin oldukça kısa olmasının ana nedenlerinden birinin bu mühürlenmiş genlerden kaynaklandığı düşünülmekte. Dolayısı ile, genomik mühürlenmenin yaklaşık 150 milyon yıl önce, canlılarda doğum olayının ortaya çıkmasında rol oynadığı sanılmaktadır.
Evrimsel açıdan, bu mekanizmanın hamilelik sırasında anne ile yavrusunun sınırlı besin kaynakları için verdikleri mücadele (çıkar çatışması) ve annenin yavrusunu rahat doğurabilmesi için onu mümkün olan en küçük boyutta tutmayı sağladığı düşünülmekte. Bunun tersine,  babadan gelen mühürlenmiş genlerin ise yavruyu büyük yapma yönünde çalıştığı anlaşılmakta. Çünkü, ne de olsa baba ile bebek arasında bir çıkar çatışması yok. Onu doğuracak olan ve kanındaki besinleri onunla paylaşacak olan anne. Başka bir ifade ile, annenin bu konudaki genleri bencil davranıp, rezervleri yavrusu ile paylaşmada anne daha çok kendi sağlığını ön planda tutarken, babanın genleri ise yavru lehine çalışmakta. Annenin mühürlenmiş genleri açılıp ifade olursa çocuk küçük, babanın mühürlü genleri açılıp ifade olursa çocuk normalden büyük olacaktır. Her iki ebeveynin mühürlü genleri birbirinin etkisini yok ederse, çocuk normal büyüklükte olacaktır. Bu genetik çatışma veya savaş sadece hamilelik sırasında değil, doğumdan sonra bile devam eder. Örneğin, bu şekilde doğmuş ve babadan gelen mühürlü geni ifade eden dişi farelerin, kendi yavrularını beslemede isteksiz davrandıkları görülmüştür.
Mühürlenmiş genlerde meydana gelen anormallikler hayatın erken evrelerinde (döllenmeyi takiben yavru doğana kadar) kendisini gelişimsel ve sinirsel bozukluklarla ortaya koyarken, ileriki yaşmada ise kanserden, Alzheimer hastalığına ve bipolar rahatsızlık, şeker hastalığı, cinsel yöneliş, otizm, obesite ve şizofreniye kadar bir seri rahatsızlıkla kendini gösterebilir. Özellikle de mühürlenmiş genlerle ilgili rahatsızlıkların başında zamanla obezite ve tip 2 şeker hastalığına sebep olan ve 15 kromozom üzerindeki bazı genlerin işlevinin kaybolmasından kaynaklanan Angelman ve Prader-Willi Sendromu ile ilişkili olduğu bilinmekte.
imprintingHenüz cevaplanamayan soruların başında ise “mühürlenme mekanizması”nın nasıl çalıştığı geliyor. Her ne kadar sperm ve yumurtanın oluşumu sırasında, bu eşey hücrelerindeki kromozomların üzerinde yer alan genlerin epigenetik etiketlerinin silinip yeniden yazıldığını içerse de, konuyu anlamaktan çok uzağız. Son çalışmalar, metil gruplarından yoksun besin maddeleri ile beslenmenin, döllerde mühürlenmiş genlerinin ifade profillerini etkilediğini göstermektedir. Dolayısı ile mühürlenmiş genlerin çevresel faktörlerden yani fiziksel ve kimyasal ajanlardan etkilendiği düşünülmekte.

4 Ocak 2017

Kanser tedavisinde en son trend: immünoterapi...

Immunotherapy.gifİmmünoterapi, kısaca başta kanser olmak üzere hastalıklara karşı doğal bağışıklık sistemimizin kullanılmasıdır. Bu konudaki iki yazımı burada ve burada okuyabilirsiniz...
Bu yazımın konusu, kanser immünoterapisinde kullanılan veya bu konuda potansiyeli olan en son ajanlar ve uygulamalar...
Kanser immünütepasinde, bağışıklık sistemi, anormal (kanser) hücrelerin saptanması ve yok edilmesi için kullanılabilir. Ancak, kanser hücreleri bazen bağışıklık sistemi tarafından algılanmayı ve tahrip edilmeyi önleyebilirler. Bunu üç yolla yaparlar:
  • Yüzeylerindeki tümör antijenlerinin ifadelerini azaltarak
  • Yüzeylerinde bağışıklık sisteminin inaktive eden proteinleri ifade ederek
  • Tümör mikro çevresinde bağışıklık tepkisini bastıran, ancak tümör hücrelerinin çoğalmasını ve sağkalımını teşvik eden maddeleri ortama salarak 
Son birkaç yılda, kanser immünolojisinin hızla ilerleyen alanı, immünoterapi adı verilen ve tümörlere karşı bağışıklık tepkilerinin gücünü artıran kanseri yeni bir tedavi yönteminin potansiyeli araştırılmakta.  
İmmünoterapi bağışıklık sisteminin spesifik bileşenlerinin aktivitelerini uyarır veya bağışıklık tepkilerini bastıran kanser hücreleri tarafından üretilen sinyalleri önlemeye dayalıdır.
Bir immünoterapi yaklaşımı, “immün kontrol noktası” proteinleri olarak adlandırılan bazı proteinleri kontrol altında tutmaya dayanır. Normalde bu proteinler, bağışıklık tepkilerinin gücünü ve süresini sınırlarlar. Yani diğer bir deyimle, bu proteinlerin normal işlevi normal hücrelere ve anormal hücrelere zarar verebilecek aşırı yoğun yanıtları önleyerek bağışıklık tepkilerini kontrol altında tutar. Ancak araştırmalar, tümörlerin bu proteinleri komuta edebileceğini ve bu sayede bağışıklık tepkisini bastırdıklarını ortaya koymuştur.
Bu bağışıklık kontrol noktası proteinlerinin aktivitesini bloke etmek, bağışıklık sistemindeki "frenleri" serbest bırakarak kanser hücrelerini yok etme kabiliyetini arttırır. Günümüzde birkaç bağışıklık kontrol noktası inhibitörü, Gıda ve İlaç İdaresi (FDA) tarafından onaylanmış bulunmaktadır.
Bunlardan üç tanesi monoklonal antikordur.
Ipilimumab, ilerlemiş melanoma (deri kanseri) tedavisinde kullanılır. Bu antikor sitotoksik T lenfositleri olarak adlandırılan aktive edilmiş immün hücrelerin yüzeyinde ifade edilen ve T hücrelerini inaktive eden CTLA4 adlı kontrol noktası proteinine bağlanır ve onun aktivitesini bloke eder.
cdr776560-750
Diğer iki kontrol noktası inhibitörü nivolumab ve pembrolizumab olup, benzer şekilde işlev görürler. Ancak bu iki antikor aktif T hücrelerinin yüzeyindeki PD-1 kontrol noktası proteini hedeflerler. Nivolumab ileri melanoma veya ileri akciğer kanserlerinin tedavisi, pembrolizumab ileri melanoma için kullanılmaktadır.
cdr774646-750
Bağışıklık kontrol noktası inhibitörü: T hücreleri ve bazı kanser hücreleri tarafından yapılan bazı proteinleri bloke eden bir ilaç türü. Bu proteinler bağışıklık tepkilerini kontrol altında tutar ve T hücrelerinin kanser hücrelerini öldürmesini önleyebilir. Bu proteinler bloke edildiğinde, bağışıklık sistemindeki "frenler" serbest bırakılır ve T hücreleri kanser hücrelerini daha iyi öldürebilir. T hücreleri veya kanser hücreleri üzerinde bulunan kontrol noktası proteinlerinin örnekleri PD-1 / PD-L1 ve CTLA-4 / B7-1 / B7-2'yi içerir. Bazı bağışıklık kontrol noktası inhibitörleri kanseri tedavi etmek için kullanılır.
Araştırmacılar ayrıca PD-1’nin, tümör hücreleri yüzeyindeki PD-L1 ve PD-L2 proteinlerine bağlanmasını engelleyen kontrol noktası inhibitörleri de geliştirdiler.
Bu konudaki çalışmalardan biri de “adoptif hücre transferi (AHT)” dir. Bu yaklaşımda, hastanın tümörüne sızmış T hücreleri toplanır ve laboratuar ortamında çoğaltılır. Bu hücreler daha sonra “sitokinler” denilen bağışıklık sistemi sinyal proteinleri ile aktive edilir ve hastanın kan dolaşımına verilir. Tümör hücrelerini iyi tanıyan bu hücreler şimdi daha çok sayıda olduğundan, tümör hücrelerine karşı daha agresif bir bağışıklık yanıtı verir ve onların ortadan kalkmasını sağlar.  
Başka çeşit bir AHT formu CAR T-hücresi tedavisidir. Bu tedavi yaklaşımında bir hastanın T hücreleri kandan toplanır ve kimerik antijen reseptörü veya CAR olarak bilinen bir protein ifade etmek için genetik olarak modifiye edilir. Daha sonra, modifiye edilmiş hücreler laboratuarda çoğaltılır ve hastaya verilir. CAR, T hücrelerinin yüzeyinde ifade edilen modifiye olmuş bir T-hücresi reseptörüdür. Bu reseptörler, modifiye T hücrelerinin kanser hücrelerinin yüzeyindeki spesifik proteinlere yapışmasını sağlar. Bir kez kanser hücrelerine bağlandıktan sonra modifiye edilmiş T hücreleri aktive olur ve onlara saldırır.
İmmünterapinin diğer yollarından bir, terapötik antikorların kullanılmasıdır. Bu çeşit bir uygulamada, kanser hücrelrinin yüzeyindeki özel proteinlere bağlanan terapötik antikorlar laboraturda yapılır. Bu antikorlara kanser hücresine zarar veren bir toksik madde bağlanır. Dolaşıma verildiğinde antikor gidip kanserli hücreyi bulur ve bağlanır ve beraber götürdüğü toksik maddeyi hücreye sunar. Böylece, kanser hücresi ortadan kaldırılır. FDA onaylı bu şekilde çalışan bazı antikor-toksik madde bileşikleri:
Bazı meme kanseri tipleri için ado-trastuzumab emtansine, Hodgkin lenfoma için brentuximab vedotin ve non-Hodgkin T hücre lenfoma tipi Hodgkin olmayan B tipi hücre lenfoma türü için ibritumomab tiuxetan.
Diğer terapötik antikorlar toksik yük taşımazlar. Bu antikorlardan bazıları kanser hücrelerine bağlanmaları durumunda onları intihara (apoptoz) zorlarlar. Diğer durumlarda, kanser hücrelerine antikor bağlanması, diğer bazı bağışık hücreler veya onlar tarafından üretilen ve "komplement" olarak bilinen proteinler tarafından tanınır ve bu hücre ve proteinler kanser hücresinin ölümüne aracılık ederler. Birincisine “antikora bağlı hücre aracılı sitotoksisite” denirken, ikincisi “kompleman bağımlı sitotoksisite” olarak bilinir.
Bu tip terapötik antikorlara bir örnek, B lenfositlerinin yüzeyinde bulunan ve CD20 adı verilen bir proteini hedefleyen rituximab 'dir. CD20'yi ifade eden hücreler rituksimab ile kaplandığında, ilaç apoptozu indükleyerek hücreleri ölüme götürür veya “antikora bağlı hücre aracılı sitotoksisite” ve “komplemana bağımlı sitotoksisite” ile hücreleri ortadan kaldırır.
Diğer terapiler, antikor olmayan bağışıklık sistemi moleküllerini ve kanser öldürücü ajanları birleştirir. Buna en iyi örnek, kutanöz T hücre lenfomasının tedavisi için onaylanan “denilekin diftitoks” olup, difteriye sebep olan Corynebacterium bakterisi tarafından üretilen difteri toksini ile bir sitokin olan interlökin-2 (IL-2) 'nin bağlanmasından elde edilir. Bazı lösemi ve lenfoma hücreleri yüzeylerinde IL-2 için reseptörler ifade ederler. Denileukin diftitox uygulamasında, kanser hücrelerini hedeflemek için IL-2 kısmı kullanılırken, onları öldürmek için difteri toksinin kullanılır.
Kanser tedavisi (veya terapötik) aşıların kullanımı immünoterapide bir başka yaklaşımdır. Bu aşılar genellikle hastanın kendi tümör hücrelerinden veya tümör hücreleri tarafından üretilen maddelerden yapılır. Bu çeşit terapi veya tedavi, vücudun kansere karşı güçlü bir yanıt oluşturduğu kanser safhasında tümör hücreleri veya onlar tarafından üretilen maddelerin alınıp çoğaltılması ve hastaya tekrar verilmesine dayanır. Böyle bir ilk aşı olan “sipuleucel-T” ilk olarak 2010 yılında metastatik prostat kanseri olan bazı erkeklerde kullanılmak üzere onayladı.
Yine başka bir immünoterapi türü, kansere karşı vücudun bağışıklık tepkisini arttırmak için normal olarak bağışıklık sistemi aktivitesini düzenleyen veya modüle eden proteinleri kullanır. Bu proteinler sitokinleri ve bazı büyüme faktörlerini içerir. Kanserli hastaları tedavi etmek için iki tip sitokin kullanılmaktadır: interlökinler ve interferonlar.
İnterlökinler, lökosit (beyaz kan hücreleri) ve vücuttaki diğer hücreler tarafından üretilen proteinler olup bağışıklık tepkilerini düzenlerler. Laboratuarda yapılan interlökinler kanser tedavisinde bağışıklık sistemini artırmak için biyolojik yanıt modifiye edicileri olarak kullanılırlar. İnterferonlar da vücudumuzun normal olarak ürettiği biyolojik yanıt modifikatörüdürve bakteri, parazit ve virüslere karşı etki gösterirler. Bu proteinler aynı zamanda kanser hücrelerinin bölünmesine müdahale eder ve tümör büyümesini yavaşlatırlar. İnterferon-alfa, -beta ve -gamma dahil olmak üzere çeşitli interferon türleri vardır. İnterlökinr ve interferonlar laboratuarda da üretilebilirler.
Bu immün modüle edici maddeler farklı mekanizmalarla çalışabilir. Örneğin bir interferon türü, doğal katil hücreler ve dendritik hücreler gibi belirli beyaz kan hücrelerini aktive ederek bir hastanın kanser hücrelerine olan bağışıklık tepkisini arttırır. Sitokinlerin bağışıklık hücrelerini nasıl stimüle ettiğini anlamadaki son gelişmeler, bu ajanların kombinasyonları ve daha etkili immünoterapilerin gelişimini sağlayabilir.
Kaynak: National Cancer Institute